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Shallow-water equations with bottom drag and viscosity are used to study the
dynamics of roll waves. First, we explore the effect of bottom topography on linear
stability of turbulent flow over uneven surfaces. Low-amplitude topography is found
to destabilize turbulent roll waves and lower the critical Froude number required
for instability. At higher amplitude, the trend reverses and topography stabilizes
roll waves. At intermediate topographic amplitude, instability can be created at
much lower Froude numbers due to the development of hydraulic jumps in the
equilibrium flow. Second, the nonlinear dynamics of the roll waves is explored, with
numerical solutions of the shallow-water equations complementing an asymptotic
theory relevant near onset. We find that trains of roll waves undergo coarsening due
to waves overtaking one another and merging, lengthening the scale of the pattern.
Unlike previous investigations, we find that coarsening does not always continue
to its ultimate conclusion (a single roll wave with the largest spatial scale). Instead,
coarsening becomes interrupted at intermediate scales, creating patterns with preferred
wavelengths. We quantify the coarsening dynamics in terms of linear stability of steady
roll-wave trains.

1. Introduction
Roll waves are large-amplitude shock-like disturbances that develop on turbulent

water flows. Detailed observations were first presented by Cornish (1910), although
earlier sightings of these waves have been reported and their renditions may even
appear in old artistic prints (Montes 1998). Roll waves are common occurrences in
man-made conduits such as aquaducts and spillways, and have been reproduced in
laboratory flumes (Brock 1969). The inception of these waves signifies that variations
in flow and water depth can become substantial, both of which contribute to practical
difficulties for hydraulic engineers (Rouse 1938; Montes 1998). Although most often
encountered in artificial water courses, roll waves have also been seen in natural flows
such as ice channels (Carver, Sear & Valentine 1999), and on gravity currents in
the laboratory (Alavian 1986; Cenedese et al. 2004), ocean (Swaters 2003) and lakes
(Fer, Lemmin & Thorpe 2003). Moreover, disturbances identified as the analogues of
roll waves occur in a variety of other physical settings, such as in multi-phase fluid
(Woods, Hurlburt & Hanratty 2000), mudflow (Engelund & Wan 1984), granular
layers (Forterre & Pouliquen 2003), and flow down collapsible tubes and elastic
conduits (with applications to air and blood flow in physiology, Pedley 1980, and a
model of volcanic tremor, Julian 1994).

Waves are also common occurrences in shallow, laminar fluid films flowing on
street gutters and window panes on rainy days. These objects are rationalized as
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Figure 1. (a) A laboratory experiment in which roll waves appear on water flowing down
an inclined channel. The fluid is about 1 cm deep and the channel is 10 cm wide and 18m
long; the flow speed is roughly 1m s−1. Time series of the free-surface displacements at four
locations are plotted in (b) and (c). In (b), small random perturbations at the inlet seed the
growth of roll waves whose profiles develop downstream (the observing stations are 3m, 6m,
9m and 12m from the inlet and the signals are not contemporaneous). (c) A similar plot for
an experiment in which a periodic train was generated by moving a paddle at the inlet; as
that wavetrain develops downstream, the wave profiles become less periodic and there is a
suggestion of subharmonic instability.

wavy instabilities of uniform films and are the laminar relatives of the turbulent roll
waves, arising typically under conditions in which surface tension plays a prominent
role. As the speed and thickness of the films increases, surface tension becomes less
important, and ‘capillary roll waves’ are transformed into ‘inertial roll waves’, which
are relevant to some processes of mass and heat transfer in engineering. It is beyond
this regime, and the transition to turbulence, that one finds Cornish’s roll waves. An
experiment (motivated by Brock 1969) illustrated in figure 1 shows these roll waves
in the laboratory at a Reynolds number of about 104 and Froude number of 3.2.

A class of models that have been used to analyse roll waves are the shallow-water
equations with bottom drag and internal viscous dissipation:

∂u

∂t
+ αu

∂u

∂x
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(
tan φ − ∂h

∂x
− ∂ζ

∂x

)
− Cf f (u, h) +
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(
hνt
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)
, (1.1)

∂h

∂t
+

∂

∂x
(hu) = 0, (1.2)

where t is time, x is the downstream spatial coordinate, and g is the gravitational
acceleration. The dependent variables of this model are the depth-averaged water
velocity, u(x, t), and depth, h(x, t); the flow configuration is illustrated in figure 2,
and consists of a Cartesian coordinate system aligned with an incline of overall slope,
tan φ, with ζ representing any departure due to an uneven bottom. The bottom drag
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Figure 2. The geometry of the problem.

is Cf f (u, h), where Cf is a parameter, and the effective viscosity is νt . The parameter
α is a geometrical factor meant to characterize the flow profile in the direction
transverse to the incline.

The drag law and α vary according to the particular model chosen, and reflect
to some degree the nature of the flow. For example, the St. Venant model, popular
in hydraulic engineering, pertains to turbulent stream flow. In this instance, one
expects the flow profile to be fairly blunt, with sharp turbulent boundary layers,
and dimensional analysis suggests a form for the drag law (a crude closure for the
turbulent stress from the bed):

α = 1, f (u, h) =
u|u|
h

. (1.3)

There are empirical estimates of the friction coefficient, Cf , in the drag term, which
is often referred to as the Chézy formula.

For a laminar flow, the shallow-water model can be crudely justified by vertically
averaging the mass and momentum balance equations, using a von Kármán–
Polhausen technique to evaluate the nonlinearities (e.g. Shkadov 1967). The flow
can be approximated to be parabolic in the transverse direction giving

α = 4
5
, f (u, h) =

u

h2
. (1.4)

In this instance, Cf and νt are both given by the kinematic viscosity of the fluid. For
thin films, surface tension terms must also be added to the equations; we ignore them
in the present study.

In 1925, Jeffreys used the St. Venant model to provide the first theoretical discussion
of roll waves. He analysed the linear stability of flow over a flat plane (ζ = 0 in equation
(1.1)), including the Chézy drag term and omitting the turbulent viscosity. His main
result was an instability condition, F > 2, where F is the Froude number of the flow,
defined by F = V/

√
gD cos φ, where D and V are a characteristic fluid depth and

speed. Subsequently, Dressler (1949) constructed finite-amplitude roll waves by piecing
together smooth solutions separated by discontinuous shocks. The necessity of shocks
in Dressler’s solutions arises because, like Jeffreys, he also neglected the turbulent
viscosity, which leaves the equations hyperbolic and shock forming. Needham &
Merkin (1984) later added the eddy diffusion term to regularize the discontinuous
shocks. Some further developments were advanced by Hwang & Chang (1987),
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Prokopiou, Cheng & Chang (1991), Kranenburg (1992), Yu & Kevorkian (1992) and
Chang, Demekhin & Kalaidin (2000).

Previous investigators have incorporated a variety of forms for the viscous
dissipation term, all of them of the form νh−m∂x(h

nux). Of these, only those with
m =1 conserve momentum and dissipate energy. Furthermore, if n= 1, ν has the
correct dimension of viscosity and the total viscous dissipation is weighted by the
fluid depth. Thus we arrive at the term included in (1.1), as did Kranenburg, which
we believe is the most plausible.

The study of laminar roll waves was initiated by Kapitza & Kapitza (1949)
somewhat after Cornish and Jefferies. Subsequently, Benjamin (1957), Yih (1963) and
Benney (1966) determined the critical Reynolds number for the onset of instability
and extended the theory into the nonlinear regime. These studies exploited long-wave
expansions of the governing Navier–Stokes equations to make analytical progress,
and which leads to nonlinear evolution equations that work well at low Reynolds
numbers. However, it was later found that the solutions of those equations diverged
at higher Reynolds number (Pumir, Manneville & Pomeau 1983). This led some
authors (e.g. Shkadov 1967; Alekseenko, Nakoryakov & Pokusaev 1985) to resort to
the shallow-water model (1.1)–(1.2) to access such physical regimes.

The present study has two goals. First, we explore the effect of bottom
topography on the inception and dynamics of roll waves (ζ is a prescribed
function). Bottom topography is normally ignored in considering turbulent roll
waves. However, real water courses are never completely flat, and roll waves have
even been observed propagating down sequences of steps (E. Tziperman, private
communication). Instabilities in laminar films flowing over wavy surfaces have recently
excited interest, both theoretically (Selvarajan, Tulapurkara & Ram 1999; Cabal,
Szumbarski & Floryan 2002; Floryan 2002) and experimentally (Vlachogiannis &
Bontozoglou 2002), in view of the possibility that boundary roughness can promote
mixing and heat and mass transfer in industrial processes, or affect the transition
to turbulence. Also, in core–annular flow (a popular scenario in which to explore
lubrication problems in the pipelining industry – Joseph & Renardy (1993)), there
have been recent efforts to analyse the effect of periodic corrugations in the tube
wall (Kouris & Tsamopoulos 2001; Wei & Runschnitzki 2002). With this background
in mind, we present a study of the linear stability of turbulent flow with spatially
periodic bottom topography.

Our second goal in this work is to give a relatively complete account of the nonlinear
dynamics of roll waves. To this end, we solve the shallow-water equations (1.1)–(1.2)
numerically, specializing to the turbulent case with (1.3), and complement that study
with an asymptotic theory valid near onset. The asymptotics furnish a reduced model
that encompasses as some special limits a variety of models derived previously for roll
waves (Kranenburg 1992; Yu & Kevorkian 1992; Yu, Kevorkian & Haberman 2000).
The nonlinear dynamics captured by the reduced model also compares well with that
present in the full shallow-water system, and so offers a compact description of roll
waves. We use the model to investigate the wavelength selection mechanism for roll
waves. It has been reported in previous work that roll-wave trains repeatedly undergo
a process of coarsening, wherein two waves approach one another and collide to
form a single object, thereby lengthening the spatial scale of the wave pattern. This
dynamics was documented by Brock (1969) and is also clear in the experimental
data of figure 1. It has been incorrectly inferred numerically that this inverse-cascade
phenomenon proceeds to a final conclusion in which only one wave remains in the
domain, However, we show that coarsening does not always continue to the largest
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spatial scale, but becomes interrupted and roll-wave trains emerge over a range of
selected wavelengths.

We start with non-dimensionalizing our governing equations in § 2. Next, in § 3,
we study the equilibrium flow profiles predicted by our model and follow it with a
linear stability theory in § 4. The asymptotic analysis is described in § 5. We devote
§ 6 to the study of the nonlinear dynamics of roll waves, mainly using the reduced
model furnished by asymptotics. We summarize our results in § 7. Overall, the study
is focused on the turbulent version of the problem (i.e. St. Venant with (1.3)). Some
of the results carry over to the laminar problem (the Shkadov model with (1.4)).
However, we highlight other results which do not (see Appendix B).

A preliminary report on the current work was presented by Mandre (2001).

2. Mathematical formulation
We place (1.1)–(1.2) into a more submissive form by removing the dimensions from

the variables and formulating some dimensionless groups. We set

x = Lx̃, u = V ũ, h = Dh̃, ζ = Dζ̃ , t = (L/V )̃t, (2.1)

where

L = D cotφ, Cf f (V, D) = g sin φ, V D = Q, (2.2)

which specifies D, L and V in terms of the slope, friction coefficient and water flux,
Q. We also assume that the dependence of the drag force on u and h is such that
f (V u, Dh) = f (V, D)f (u, h). After discarding the tildes, the equations can be written
in the form

F 2(ut + αuux) + hx + ζx = 1 − f (u, h) +
ν

h
(hux)x (2.3)

and

ht + (hu)x = 0, (2.4)

where the two dimensionless groups,

F 2 ≡ V 2

gD cos φ
, ν =

νtV

Cf L2f (V, D)
, (2.5)

are the square of the Froude number and a dimensionless viscosity parameter, assumed
constant. As demanded by the physical statement of the problem, that the flow is
shallow, we typically take ν to be small, so that the bottom drag dominates the
internal viscous dissipation. In this situation, we expect that the precise form of the
viscous term is not important.

We impose periodic boundary conditions in x. This introduces the domain length
as a third dimensionless parameter of the problem. As mentioned earlier, we also
select topographic profiles for ζ (x) that are periodic. For the equilibria, considered
next, we fix the domain size to be the topographic wavelength, but when we consider
evolving disturbances we allow the domain size to be different from that wavelength.

3. Equilibria
The steady flow solution, u = U (x) and h = H (x), to (2.3)–(2.4) satisfies

F 2αUUx + Hx + ζx = 1 − f (U, H ) +
ν

H
(HUx)x, HU = 1, (3.1)
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Figure 3. Viscous periodic equilibria for F̂ =
√

αF = 1.225, kb = 2 and ν = 0.04, with varying
a (0.01, 0.1, 0.2, 0.3, 0.5, 0.75 and 1).

since we have used the water flux Q to remove dimensions. For both drag laws (1.3)
and (1.4), f (U, H ) = U 3. Also, by taking F̂ =F

√
α as a modified Froude number, we

avoid a separate discussion of the effect of α.
By way of illustration, we consider a case with sinusoidal bottom topography:

ζ (x) = a cos kbx, (3.2)

where kb is the wavenumber of the bottom topography and a is its amplitude.
Discussion on more general topographic profiles is included in § 7. Some example
equilibria are illustrated in figure 3. For low-amplitude topography, the response in
the fluid depth appears much like ζ , with a phase shift. As the amplitude increases,
however, steep surface features appear. A similar trend was experimentally observed
by Vlachogiannis & Bontozoglou (2002) which they reported as a ‘resonance’. We
rationalize these features in terms of hydraulic jumps, based on the ‘inviscid’ version
of the problem (i.e. ν = 0).

For ν = 0, the equilibria equation simplifies and can be written in the form

Hη =

[
H 3(1 − f (1/H, H ) − kbζη)

kb(H 3 − F̂ 2)

]
(3.3)

where η = kbx. All solutions to (3.3) reside on the (η, H ) phase plane; we require
only those that are strictly periodic in η. Now, the extrema of H (η) occur for
H = 1/(1 − kbζη)

1/3, whilst there is a singular point at H = F̂ 2/3. In general, H (η)
becomes vertical at the latter point, except if the numerator also vanishes there, in
which case inviscid solutions may then pass through with finite gradient. Overall,
the two curves, H =1/(1 − kbζη)

1/3 and H = F̂ 2/3, organize the geometry of the
inviscid solutions on the (η, H ) phase plane. Four possible geometries emerge, and
are illustrated in figure 4.

The two curves cross when F̂ 2 = 1/(1 − kbζη) somewhere on the (η, H )-plane. Thus,
if the amplitude of the topography is defined so that −a � ζ ′(η) � a, the curves cross
when

(1 + kba)−1/2 < F̂ < (1 − kba)−1/2 (3.4)
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Figure 4. Stationary flow profiles for kb = 5, a = 0.1 and four values of F̂ = F
√

α: (a) 2.2,
(b) 1.8, (c) 1.4, (d) 0.5. Light dotted curves show a variety of inviscid solutions (ν = 0) to illustrate
the flow on the phase plane (η,H ). The curve of thicker dots shows a periodic viscous solution

(with ν = 0.002). Also included is the line H = F̂ 2/3 and the curve H = (1 − ζx)
−1. In (b) and

(c), with dashed lines, we further show the inviscid orbits that intersect the ‘crossing point’,

H = F̂ 2/3 = (1 − ζx)
−1.

(if kba > 1, there is no upper bound on F̂ ). Outside this range, the inviscid system has
smooth periodic solutions, and figures 4(a) and 4(d) illustrate the two possible cases.

When F̂ falls into the range in (3.4), the two organizing curves cross, and the
geometry of the phase plane becomes more complicated. For values of F̂ adjacent to
the two limiting values in (3.4), periodic inviscid solutions still persist and lie either
entirely above or below H = F̂ 2/3 (figure 4b). We denote the ranges of Froude number
over which the solutions persist by (1 + kba)−1/2 < F̂ < F1 and F2 < F̂ < (1 − kba)−1/2.
At the borders, F1 and F2, the inviscid periodic solutions terminate by colliding with
a crossing point. Thereafter, in F1 < F̂ < F2, no periodic, continuous solution exists:
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Figure 5. Limiting periodic inviscid solutions for a = 0.1, and (a) kb = 5 and F̂ ≈ 1.311,

(b) kb =10 and F̂ ≈ 0.733. The dots (which lies underneath the inviscid solution except near
the corner at the rightmost crossing point) show the viscous counterparts for ν = 0.002.

all trajectories on the phase plane either diverge to H → ∞ or become singular at
H = F̂ 2/3 (figure 4c).

Although there are no periodic inviscid solutions within the divergent range of
Froude numbers, F1 < F̂ < F2, there are periodic, weakly viscous solutions that trace
out inviscid trajectories for much of the period (see figure 4). The failure of the
inviscid trajectories to connect is resolved by the weakly viscous solution passing
through a hydraulic jump over a narrow viscous layer. The limiting inviscid jump
conditions can be determined by integrating the conservative form of the governing
equations across the discontinuity:

U+H+ = U−H− = 1, F̂ 2U+ +
H 2

+

2
= F̂ 2U− +

H 2
−

2
, (3.5)

where the subscripts + and − denote the values downstream and upstream respec-
tively.

The jump region, F1 < F̂ < F2, is delimited by values of the Froude number at which
an inviscid solution curve connects the rightmost crossing point to itself modulo one
period. This curve is continuous, but contains a corner at the crossing point; see
figure 5. The curves F1 and F2 are displayed on the (F̂ , kba)-plane in figure 6.
Hydraulic jumps form in the weakly viscous solutions in the region between these
curves.

A departure from the classification shown in figure 4 occurs for Froude numbers
near unity and low-amplitude topography. Here, the flow of the inviscid solutions on
the (η, H )-phase plane is sufficiently gently inclined to allow orbits to pass through
both crossing points. This leads to a fifth type of equilibrium, as shown in figure 7.
Although this solution is continuous, its gradient is not; again, there is a weakly
viscous counterpart. As the amplitude of the topography increases, the flow on the
phase plane steepens, and eventually the inviscid orbit disappears (see figure 7), to
leave only viscous solutions with hydraulic jumps. This leads to another threshold,
F̂ =F∗, on the (F̂ , kba)-plane, which connects the F1 and F2 curves across the region
surrounding F̂ =1 (see the inset of figure 6).

4. Linear stability theory
We perform a linear stability analysis of the steady states described above to

uncover how the bed structure affects the critical Froude number for the onset of roll
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weakly viscous solutions with ν =2 × 10−3.

waves. Let u =U (x) + u′(x, t) and h= H (x) + h′(x, t). After substituting these forms
into the governing equations and linearizing in the perturbation amplitudes, we find
the linear equations,

F 2[u′
t + α(Uu′)x] + h′

x = −fhh
′ − fuu

′ + νu′
xx (4.1)

h′
t + (Uh′ + Hu′)x = 0, (4.2)

where fu = (∂f/∂u)u =U,h = H and fh = (∂f/∂h)u =U,h = H denote the partial derivatives
of the drag law, evaluated with the equilibrium solution.
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Because of the spatial periodicity of the background state, a conventional stability
analysis must proceed by way of Floquet, or Bloch, theory. We represent infinitesimal
perturbations about the equilibria by a truncated Fourier series with a Bloch
wavenumber, K (a Floquet multiplier), and growth rate, σ :

u′ =

N∑
j=−N+1

uje
ijkbx+iKx+σ t , h′ =

N∑
j=−N+1

hje
ijkbx+iKx+σ t . (4.3)

We introduce these solutions into the governing equations and then linearize in
the perturbation amplitudes, to find an algebraic eigenvalue equation for σ . The
system contains five parameters: the Froude number (F ), wavenumber of bottom
topography (kb), amplitude of bottom topography (a), the Bloch wavenumber (K)
and the diffusivity (ν).

When the bottom is flat, the equilibrium is given by U =H = 1 and we avoid
the Bloch decomposition by taking (u′, h′) ∝ exp(ikx). This leads to the dispersion
relation,

σ = −ik
1 + α

2
− fu + νk2

2
±

√[
fu + νk2

2F 2
+

(α − 1)ik

2

]2

+
ikfh − k2

F 2
. (4.4)

For long waves, the least stable root becomes

σ ∼ −ik

[
fu

fh

− 1

]
+

[
F 2

(
fufh(α − 1) + f 2

h

)
− f 2

u

f 3
u

]
k2 + · · · (4.5)

which displays the instability condition,

F 2 >
f 2

u

fufh(α − 1) + f 2
h

. (4.6)

For the turbulent case, fu =2 and fh = − 1, and so F > 2, as found by Jeffreys. For
the laminar case, on the other hand, fu = 1 and fh = − 2, which gives F >

√
5/22.

We next provide a variety of numerical solutions to the linear stability problem for
finite topography with the sinusoidal profile, ζ = a sin(kbx), and using the St. Venant
model (f = u2/h and α = 1). In this instance, the Bloch wavenumber allows us to
analyse the stability of wavenumbers which are not harmonics of kb. We only need
to consider

−kb

2
< K �

kb

2
; (4.7)

values of K outside this range do not give any additional information because the
wavenumber combination, k = jkb + K for j = 0, 1, 2, . . . , samples the full range.

The dependence of the growth rate on k is illustrated in figure 8 for three Froude
numbers straddling F = 2 and a low-amplitude topography. The case with larger
Froude number is unstable to a band of waves with small wavenumber, and illustrates
how the instability invariably has a long-wave character. This feature allows us to
locate the boundaries of neutral stability by simply taking K to be small (as done
below).

A key detail of this stability problem is that low-amplitude topography is
destabilizing. We observe this feature in figure 9, which shows the curve of neutral
stability on the (F, a)-plane for fixed Bloch wavenumber, K =10−3, and three values
of ν, including ν =0. The curves bend to smaller F on increasing a, indicating how
the unstable region moves to smaller Froude number on introducing topography.



Dynamics of roll waves 11

0 0.2 0.4 0.6

–8

–4

K

F = 2.1

2

1.9

0 0.2 0.4 0.6
1.46

1.47

1.48

1.49

1.50

K

(b)(a)

F = 1.9

2.0

2.1

0
(×10–3)

Figure 8. Eigenvalues from numerical stability analysis and asymptotics for ν = 0.4, kb = 10,
a = 0.05, and Froude numbers of 1.9, 2 and 2.1. The lines denote numerical calculations and
the dots represents asymptotic theory (for ν ∼ k−1

b ; theory A). (a) The growth rate, Re(σ ), and
(b) the phase speed, −Im(σ )/K .

0 0.1 0.2
1.96

1.97

1.98

1.99

2.00

0.4

0

ν = 0.01

a

F

Figure 9. Stability boundaries on the (a, F )-plane, near (a, F ) = (0, 2), for fixed Bloch
wavenumber, K = 10−3, and three values of viscosity (0, 0.01 and 0.1). Also shown are the
boundaries predicted by the two versions of asymptotic theory (theory A is used for ν = 0.1,
and theory B for ν = 0.01 and 0).

In this region of parameter space, we find that viscosity plays a dual role: as is clear
from the classical result for a flat bottom, viscosity stabilizes roll waves of higher
wavenumber; in conjunction with topography, however, viscosity can destabilize long
waves, see figures 9 and 10. The second figure shows the depression of the F =2
stability boundary on the (ν, F )-plane as the bottom topography is introduced. The
boundary rebounds on increasing the viscosity further, and so the system is most
unstable for an intermediate value of the viscosity (about 0.1 in the figures). These
results expose some dependence on ν, which presumably also reflects the actual form
of the viscous term. Nevertheless, the ‘inviscid’, ν → 0, results can also be read off the
figures and are independent of that form. It is clear from figures 9 and 10 that the
general trend is to destabilize turbulent roll waves.

Further from (a, F ) = (0, 2), a new form of instability appears that extends down to
much smaller Froude number, see figure 11(a). The growth rate increases dramatically
in these unstable windows, as shown further in figure 11(b). In fact, for ν = 0, it appears
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Figure 10. Stabilities boundaries on the (ν, F )-plane, near a = 0, for fixed Bloch wavenumber,
K = 10−3, and kb =10. Also shown are the boundaries predicted by the two versions of
asymptotic theory (labelled A and B).
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Figure 11. Instability windows at smaller Froude number. (a) Contours of constant growth
rate (σ ) for ν = 0.05, kb = 10, K = 10−3. Thirty equally spaced contours (lighter lines) are
plotted with the growth rate going from 1.14 × 10−4 to −4.28 × 10−5. The darker line denotes
the neutral stability curve and the dashed line shows the location of the F2-curve. (b) Growth
rates against a for F = 1.6, kb = 5, K = 10−3 and four values of ν. These sections cut through
the window of instability at smaller Froude number. Also shown is the inviscid growth rate,
which terminates as F → F2 (the vertical dotted line).

as though the growth rate as a function of a becomes vertical, if not divergent (we have
been unable to resolve precisely how the growth rate behaves, although a logarithmic
dependence seems plausible). This singular behaviour coincides with the approach of
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Figure 12. Stability boundaries for (a) different viscosities, with kb =10 and K = 10−3 and
(b) different wavenumbers of bottom topography (kb), with ν = 0.1 and K = 10−3.

the inviscid equilibrium to the limiting solution with F = F2. In other words, when
the equilibrium forms a hydraulic jump, the growth rate of linear theory becomes
singular (in gradient, and possibly even in value). The weakly viscous solutions show
no such singular behaviour, the jump being smoothed by viscosity, but the sharp peak
in the growth rate remains, and shifts to larger a (figure 11). As a result, the unstable
windows fall close to the F2-curve of a neighbouring inviscid equilibrium; a selection
of stability boundaries displaying this effect are illustrated in figure 12. However, we
have not found any comparable destabilization near the F1-curve. In fact, near the
F1-curve, the growth rates appear to decrease, suggesting that the hydraulic jump in
this part of the parameter space is stabilizing.

Figure 12 also brings out another feature of the stability problem: for larger a,
the stability boundaries curve around and pass above F = 2. Thus, large-amplitude
topography is stabilizing.

4.1. An integral identity for inviscid flow

When ν = 0, an informative integral relation can be derived from the linear equations
by multiplying (4.1) by 2h′U − Hu′ and (4.2) by 2F 2Uu′ − h′, then integrating over x

and adding the results:

d

dt

〈
F 2H

(
u′ − h′U 2

2

)2

+ h′2
(

1 − F 2U 2

4H

)〉

= −〈U (2u′ − U 2h′)2〉 −
〈

3Ux

(
F 2u′2H +

h′2

4

)〉
, (4.8)

where the angular brackets denote x-integrals.
For the flat bottom, U =H = 1, and the left-hand side of this relation is the time

derivative of a positive-definite integral provided F < 2. The right-hand side, on the
other hand, is negative definite. Thus, for such Froude numbers, the integral on the
left must decay to zero. In other words, the system is linearly stable, and so (4.8)
offers a short-cut to Jeffrey’s classical result.

Because of the integral involving Ux , a stability result is not so straightforward with
topography, although (4.8) still proves useful. First, assume that this new integral
is overwhelmed by the first term on the right of (4.8), so that the pair remain
negative definite. This will be true for low-amplitude topography, away from the
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region in which hydraulic jumps form. Then stability is assured if 1 >F 2U 2/(4H ) or
F < 2

√
H/U . That is, if the local Froude number is everywhere less than 2 (a natural

generalization of Jeffrey’s condition).
Second, consider the case when the local Froude number condition is everywhere

satisfied, so that stability is assured if the right-hand side of (4.8) is always negative.
But on raising the amplitude of the topography, Ux increases sharply as a hydraulic
jump develops in the equilibrium flow. Provided Ux < 0 at that jump, the right-hand
side of (4.8) can then no longer remain always negative, and allowing an instability
to become possible. As illustrated in figure 4, the jump in H is positive across the
F2-curve, so Ux < 0, and that feature is potentially destabilizing, as indicated in the
stability analysis. Nonetheless, we have found no explanation for why the jump near
F2 is destabilizing but the one near F1 is not.

5. Asymptotics
We complement the linear stability analysis with an analytical theory based on

asymptotic expansion with multiple time and length scales. The theory is relevant
near onset for low-amplitude but rapidly varying topography, and proceeds in a
similar fashion to that outlined by Yu & Kevorkian (1992) and Kevorkian, Yu &
Wang (1995) for flat planes; topography is incorporated by adding a further, finer
length scale. We offer two versions of the theory, suited to different asymptotic scalings
of the viscosity parameter, ν. We refer to the two versions as theories A and B.

5.1. A first expansion; ν ∼ ε (theory A)

We take ε ≡ k−1
b  1 and ζ to be an O(ε) function of the coordinate, η = x/ε, resolving

the rapid topographic variation, ζ → εA(η), where A(η) describes the topographic
profile. We introduce the multiple length and time scales, (η, x) and (t, τ ), where
τ = εt , giving

∂t → ∂t + ε∂τ , ∂x → 1

ε
∂η + ∂x, (5.1)

and further set

ν = εν1, F = F0 + εF1. (5.2)

We next expand the dependent variables in the sequences,

u = 1 + ε[U1(η) + u1(x, t, τ )] + ε2[U2(η, x, t, τ ) + u2(x, t, τ )]

+ ε3[U3(η, x, t, τ ) + u3(x, t, τ )] + . . . , (5.3)

h = 1 + ε[H1(η) + h1(x, t, τ )] + ε2[H2(η, x, t, τ ) + h2(x, t, τ )]

+ ε3[H3(η, x, t, τ ) + h3(x, t, τ )] + . . . . (5.4)

Here, U1 and H1 denote the fine-scale corrections due to the topography, whereas
u1 and h1 represent the longer-scale, wave-like disturbance superposed on the
equilibrium. To avoid any ambiguity in this splitting, we demand that U1 and H1 have
zero spatial average. At higher order, we again make a separation into fine-scale and
wave components, but the growing disturbance modifies the local flow on the fine
scale and so, for example, U2 and H2 acquire an unsteady variation.

At leading order, we encounter the equations,

F 2
0 U1η + H1η + Aη = ν1U1ηη, U1η + H1η = 0, (5.5)
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and write the solution formally as

U1 = f (η) ≡ −H1, (5.6)

where f (η) has zero spatial average. A convenient way to compute f (η) is via a
Fourier series. Let

A(η) =

∞∑
j=1

Aje
ijη + c.c., (5.7)

where the coefficients Aj are prescribed (without loss of generality we may take A(η),
i.e. ζ , to have zero spatial average). Then,

f =

∞∑
j=1

fje
ijη + c.c., fj = − Aj exp(iθj )√(

F 2
0 − 1

)2
+ ν2

1j
2

, tan θj =
ν1j

F 2
0 − 1

. (5.8)

At next order:

F 2
0 U2η + H2η − ν1U2ηη = −F 2

0 (u1t + u1x) − h1x − 2u1 + h1

− F 2
0 u1U1η − F 2

0 U1U1η − 2U1 + H1 − 2F0F1U1η + ν1H1ηU1η, (5.9)

U2η + H2η = −h1t − h1x − u1x − (H1U1)η − (h1U1 + H1u1)η. (5.10)

We deal with these equations in two stages. First, we average over the fine length scale
η to eliminate the corrections, U2 and H2. This generates our first set of evolution
equations for the variables u1 and h1:

F 2
0 (u1t + u1x) + h1x + 2u1 − h1 = −ν1U

2
1η, (5.11)

h1t + h1x + u1x = 0. (5.12)

This pair of equations has the characteristic coordinates, ξ = x − (1 + F −1)t and
ξ̃ = x − (1 − F −1)t . Moreover, along the characteristics, the solutions either grow or
decay exponentially unless the undifferentiated terms in (5.11) cancel. To avoid such
detrimental behaviour, we demand that those terms vanish, which fixes

h1(ξ ) = 2u1(ξ ) + ν1U
2
1η (5.13)

and F0 = 2, the familiar neutral stability condition. Hence, superposed on the fine-scale
flow structure, there is a propagating disturbance characterized by the travelling-wave
coordinate, ξ = x − 3t/2.

Second, we decompose the fine-scale variation into two parts:

U2 = Û 2(η) + Ǔ 2(η)u1(ξ, τ ), H2 = Ĥ 2(η) + Ȟ 2(η)u1(ξ, τ ), (5.14)

with

4Û 2η + Ĥ 2η − ν1Û 2ηη = −4ffη − 3f − 4F1fη − ν1

(
f 2

η − f 2
η

)
, (5.15)

Û 2η + Ĥ 2η = 2ffη − ν1fηf 2
η , (5.16)

4Ǔ 2η + Ȟ 2η − ν1Ǔ 2ηη = −4fη (5.17)

Ǔ 2η + Ȟ 2η = −fη. (5.18)

The solution Û 2 and Ĥ 2 represents a correction to the fine-scale flow structure, and
is not needed for the evolution equation of the disturbance. The other component of
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the solution can again be determined by decomposition into Fourier series:

Ǔ 2 =

∞∑
j=1

Ǔ je
ijη + c.c., Ȟ 2 =

∞∑
j=1

Ȟ je
ijη + c.c., (5.19)

with

Ǔ j = − 3fje
iθj√

9 + ν2
1j

2
≡ 3Aje

2iθj

9 + ν2
1j

2
, Ȟ j = −Ǔ j − fj , (5.20)

and tan θj = ν1j/3.
We proceed to one more order in ε, where the spatially averaged equations are

h2ξ − 2u2ξ + 2u2 − h2 = 2F1u1ξ − 4u1τ − 4u1u1ξ − (u1 − h1)
2 − 4U 2

1

+ ν1

[
u1ξξ + (H2η − U2η)U1η + (h1 − U1)U

2
1η

]
, (5.21)

1
2
h2ξ − u2ξ = h1τ + (u1h1)ξ . (5.22)

Finally, we eliminate the combination, 2u2 − h2, to arrive at the evolution equation of
our first expansion:

4u1τ + 3
(
u2

1

)
ξ

− 8u1τξ − 6
(
u2

1

)
ξξ

+ ν1

(
f 2

η − 2Ǔ 2ηfη

)
u1ξ

+ 2
(
F1 − ν1f 2

η

)
u1ξξ + ν1u1ξξξ = 0. (5.23)

5.2. A second expansion; ν ∼ ε2 (theory B)

A distinctive feature of the expansion above is that if ν1 = 0, topographic effects
disappear entirely. In other words, terms representing ‘inviscid’ topographic effects
must lie at higher order. To uncover these terms, we design a different expansion,
with a smaller scaling for the viscosity. We sketch the alternative procedure: again we
take ε ≡ k−1

b  1 and ζ → εA(η). This time the slow time scale is even slower, τ = ε2t ,
and we pose

ν = ε2ν2, F = F0 + ε2F2, (5.24)

and the asymptotic sequences,

u = 1 + εU1(η) + ε2[U2(η) + u2(x, t, τ )] + ε3[U3(η, x, t, τ ) + u3(x, t, τ )] + . . . ,

h = 1 + εH1(η) + ε2[H2(η) + h2(x, t, τ )] + ε3[H3(η, x, t, τ ) + h3(x, t, τ )] + . . . .

The corrections, U1, H1, U2 and H2, denote the fine-scale corrections due to the
topography, whereas u2 and h2 now represent the growing disturbance.

The expansion proceeds much as before. A summary of the details is relegated to
Appendix A. The principal result is the amplitude equation,

4u2τ + 3
(
u2

2

)
ξ

− 8u2τξ − 6
(
u2

2

)
ξξ

+ 3
(
6U 2

1 + ν2U
2
1η

)
u2ξ

+ 2
(
F2 − 3U 2

1 − ν2U
2
1η

)
u2ξξ + ν2u2ξξξ = 0, (5.25)

which explicitly contains the inviscid topography effects via the leading-order
equilibrium correction, U1 = − A/3.

5.3. Revisiting linear stability

We now revisit linear stability using the amplitude equations for the St. Venant model
(equations (5.23) and (5.25)) by taking uj =υeiKξ + λτ , with j =1 or 2, and linearizing
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in the perturbation amplitude υ:

λ =
K2q − iK(p − νjK

2)

4(1 − 2iK)
, (5.26)

where

p =


ν1

(
f 2

η − 2Ǔ 2ηfη

)
3
(
6U 2

1 + ν2U
2
1η

)
,

q =

{
2
(
F1 − ν1f 2

η

)
(theory A)

2
(
F2 − 3U 2

1 − ν2U
2
1η

)
(theory B).

(5.27)

The growth rate is

Re(λ) =
K2(q + 2p − 2νjK

2)

4(1 + 4K2)
, (5.28)

implying instability for q + 2p > 0. The neutral stability condition, q +2p = 0, is
written out fully as

F1 = 2ν1Ǔ 2ηfη or F2 = −15U 2
1 − 2ν2U

2
1η. (5.29)

In both cases the critical Froude number is reduced by the topography (the corrections
F1 and F2 are negative). To see this for theory A, we introduce the Fourier
decompositions in (5.8) and (5.19), to find

F1 = −36ν1

∞∑
j=1

j 2|Aj |2(
9 + ν2

1j
2
)2

. (5.30)

Thus small-amplitude topography is destabilizing for any periodic profile.
On restoring the original variables, we find that the stability boundary near

(a, F ) = (0, 2) is given by

F − 2 =




−36k2
bν

∞∑
j=1

j 2|ζj |2
(
9 + ν2j 2k2

b

)−2
for ν ∼ O

(
k−1

b

)
−

(
15ζ 2 + 2νζ 2

η

)
/9 for ν ∼ O

(
k−2

b

)
,

(5.31)

where Aj = kbζj and ζj denotes the unscaled Fourier mode amplitudes of ζ (x). For the
sinusoidal profile, ζ = a sin(kbx), the mode amplitudes are ζj = − iaδj1/2. It follows
that

F − 2 =

{
−9νk2

ba
2
(
9 + ν2k2

b

)−2
for ν ∼ O

(
k−1

b

)
−

(
15 + 2νk2

b

)
a2/18 for ν ∼ O

(
k−2

b

)
.

(5.32)

These predictions are compared with numerical solutions of the linear stability
problem in figures 8–10. Both versions of the asymptotics are used in the comparison,
choosing one or the other according to the size of ν. In figure 10 the stability
boundary is shown over a range of ν; the numerical results span both ranges of the
asymptotics, ν ∼ k−1

b and k−2
b , and there is a distinctive crossover between the two

asymptotic predictions for intermediate values of ν.

5.4. Canonical form

With periodic boundary conditions, the amplitude equation has the property that
Galilean transformations cause a constant shift in uj . This allows us to place the
amplitude equation into a canonical form by defining a new variable, ϕ = 3uj/2 + C,
and introducing a coordinate transformation, (ξ, τ ) → (ξ ′, τ ) = (ξ + cτ, τ ). We may
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then eliminate any correction to the background equilibrium profile using C, and
remove the term qujξξ by suitably selecting the frame speed c. The result is our final
amplitude equation,

(1 − 2∂ξ )(ϕτ + ϕϕξ ) + pϕξ + µϕξξξ = 0, (5.33)

which has the two parameters p and µ = νj/4, and the unique equilibrium state, ϕ =0.
A third parameter is the domain size in which we solve the equation, d . If we scale
time and amplitude, τ → τ/|p| and ϕ → |p|ϕ, we may further set the parameter p to
±1, leaving only µ and d as parameters. Below we present some numerical solutions
of the amplitude equation; we exploit this final scaling to put p =1, focusing only on
unstable flows.

The amplitude equation (5.33) is identical in form to reduced models derived
by Yu & Kevorkian (1992) and Kevorkian et al. (1995). An additional short-wave
approximation leads to the modified Burgers equation derived by Kranenburg (1992),
whilst a long-wave approximation gives a generalized Kuramoto–Sivashinsky
equation, as considered by Yu et al. (2000). In contrast to those two final models,
(5.33) correctly describes both long and short waves (which can be verified by looking
at linear stability – Mandre 2001). Yu et al. (2000) and Kevorkian et al. (1995) used
a slightly different form for the diffusive term at the outset. Consequently, some of
the coefficients in (5.33) differ from those of the corresponding amplitude equations
of Yu et al. when compared in the appropriate limit. This reflects the extent to which
the amplitude equation depends on the form of the diffusion term.

6. Nonlinear roll-wave dynamics
In this section, we explore the nonlinear dynamics of roll waves, solving numerically

both the shallow-water model (and, in particular, the St. Venant version) and the amp-
litude equation derived above. Related computations have been reported previously
by Kranenburg (1992), Kevorkian et al. (1995), Brook, Pedley & Falle (1999) and
Chang et al. (2000), who ignored bottom topography and gave an incomplete picture
of the selection of wavelengths of nonlinear roll waves.

6.1. St. Venant model

We numerically integrated the St. Venant model with sinusoidal topography, beginning
from the initial conditions, uh = 1 and h = 1. A pseudo-spectral discretization in space
and a fourth-order Runge–Kutta time-stepping scheme was used. A sample integration
is shown in figure 13. In this run, the system falls into the eye of instability of § 4, and
the domain contains ten wiggles of the background topography. The short-scale effect
of the topography is evident in h, but is far less obvious in the flux, which makes hu a
convenient variable to visualize the instability. In figure 13, the instability grows from
low amplitude and then saturates to create a steadily propagating nonlinear roll wave
(modulo the periodic variation induced as the wave travels over the topography).
Although the run in figure 13 lies in the eye of instability, similar results are obtained
elsewhere in parameter space: figure 14 shows results from a run nearer the classical
roll-wave regime.

We define a measure of the roll-wave amplitude by

I 2(t) =

∫ L

0

(uh − 〈uh〉)2dx, (6.1)
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Figure 13. A numerical solution of the St. Venant model with F = 1.58, ν = 0.05, a = 0.32
and kb = 4. The domain has size 5π. (a) h(x, t), and (b) the flux, hu, as surfaces above the
(x, t)-plane. The solution is ‘strobed’ every 11 time units in order to remove most of the
relatively fast propagation of the instability (and make the picture clearer).
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Figure 14. (a) The flux (uh) associated with a nonlinear roll wave, computed from the St.
Venant model (dots) and reconstructed from the amplitude equation (solid line), for ν = 0.05,
F = 2.05, a = 0.03 and kb =4. (b) The corresponding evolution of the saturation measure, I (t),
for the amplitude equation (solid line) and St. Venant model (dashed line).

where 〈uh〉 denotes the spatial average of the flux. As illustrated in figure 14, this
quantity can be used to monitor saturation. Figure 15 shows the saturation amplitude
as a function of the Froude number for a = 0.3, ν = 0.05 and kb = 10. This slice
through the (a, F )-parameter plane intersects the eye of instability at smaller Froude
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Figure 15. Saturation amplitudes for the shallow-water equations (circles) for kb = 4, K = 0.2,
ν = 0.05 and a = 0.3. The shaded region shows the range of linear instability of the steady
background flow. Corresponding results from the amplitude equation (crosses) are also shown
for comparison.

number as well as Jeffrey’s threshold. At each stability boundary, the saturation level
declines smoothly to zero, and so we conclude that the bifurcation to instability is
supercritical.

6.2. Amplitude equation

Figure 14 also includes a numerical solution of our amplitude equation for comparison
with that from the St. Venant model. The numerical method employed a pseudo-
spectral scheme in space and a Gear-type time-integrator. The asymptotic scalings
have been used to match parameter settings and reconstruct the solution in terms
of the original variables. Each of the computations begins with small perturbations
about the equilibrium flow, although transients not captured by the asymptotic theory
preclude agreement over a brief initial period. To remove that transient and improve
the comparison of the longer-time dynamics, we have offset the asymptotic solution
in time. Figure 14 illustrates what appears to be the general result that the amplitude
equation (5.33) faithfully reproduces the roll-wave dynamics of the St. Venant model
(see also figure 15, which shows qualitative agreement in the saturation measure near
F =2, despite a relatively large topographic amplitude). We therefore focus on the
amplitude equation in giving a fuller discussion of the roll-wave dynamics, thereby
avoiding separate discussions of the problem with and without bottom topography.

Figure 16 shows the evolution of a typical roll-wave pattern, and illustrates
a key result found by previous authors – namely that roll waves coarsen. The
simulation starts from an initial condition consisting of low-amplitude, rapidly varying
perturbations about the uniform equilibrium state, ϕ =0. The instability grows and
steepens into about eight non-identical roll waves. These waves propagate at different
speeds, causing some of them to approach and collide. The colliding waves then merge
into larger waves, a process that increases the length scale of the wave train. The
collisions continually recur to create an inverse cascade that eventually leaves a pattern
with the largest possible spatial scale, a single (periodic) roll wave. Coarsening has
been observed in many different physical systems, and the dynamics seen in figure 16
seems, at first sight, to be no exception.

Coarsening dynamics can be rationalized, in part, in terms of the subharmonic
instability of trains of multiple roll waves. Specially engineered initial-value problems
illustrate this notion quantitatively. For example, figure 17 shows the response of
two periodic wave trains to subharmonic perturbations. The two simulations begin
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Figure 16. Coarsening of roll waves predicted by the amplitude equation (5.33) for d = 20
and µ= 0.05. (a) ϕ(ξ, t) as a density on the (t, ξ )-plane. (b), (c) The amplitude measure 〈ϕ2〉
(the spatial average of ϕ2) and final profile. The initial condition consisted of about eleven
low-amplitude irregular oscillations.

with initial conditions dominated by wavenumber four and six, respectively, but also
contain subharmonic wavenumbers with much lower amplitude. In each case, a train
of waves appears that propagates steadily for a period. Somewhat later, the small
subharmonic perturbations of the basic disturbance prompt collisions to trains with
half the number of waves. Again, these trains persist for a period, but then final
mergers occur to leave a single roll wave. We interpret the growth of subharmonic
perturbations in figure 1(c) to be the analogue of this instability.

Despite the total coarsening evident in figures 16 and 17, we have also found
that roll waves do not always complete an inverse cascade. Exploring a little, we
find parameters for which periodic trains of multiple roll waves appear to be stable.
Figure 18 shows such an example: a stable train of two roll waves emerges after a
number of mergers. Thus coarsening does not always continue to its final conclusion,
but becomes interrupted at an intermediate scale. We have verified that this is also a
feature of the St. Venant problem.

6.3. Linear stability of roll waves

The limitations of the coarsening dynamics can be better quantified with a linear
stability analysis of periodic nonlinear roll-wave trains. Those steadily propagating
solutions take the form ϕ = Φ(ξ − cτ ), where c is the wave speed, and satisfy

1
2
(1 − 2∂ξ )[(Φ − c)2]ξ + Φξ + µΦξξξ = 0. (6.2)
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Figure 19. (a) Steadily propagating roll-wave solutions of the amplitude equation for L = 4
and µ= 0.04 (dotted) and µ= 0 (solid). (b) The real (solid) and imaginary (dashed) parts of
an unstable eigenfunction with twice the spatial period as the basic roll wave. We use the
integral of ϕ̂ to display the eigenfunction because ϕ̂ itself contains a delta function related to
the movement of the shock for µ= 0, or a large-amplitude spike for µ= 0.04 which obscures
the picture. The eigenvalue is σ = 0.2390.

Auxiliary conditions on Φ are periodicity, the choice of origin (equation (6.2) is
translationally invariant) and the integral constraint,∫ L

0

Φ(s) ds = 0 (6.3)

(which follows from the fact that this integral is a constant of motion for (5.33) and
vanishes for the specified initial condition). This system can be solved numerically; a
sample solution is shown in figure 19.

An analytical solution to (6.2) is possible in the inviscid case: After requiring
regularity at the singular point, Φ = c, we find

Φ(ξ − cτ ) = A exp

(
ξ − cτ

4

)
+ c − 2 (6.4)

where A is a constant of integration. Because (6.4) is a monotonic function, a shock
must be placed in the solution with jump condition

c =
Φ+ + Φ−

2
, (6.5)

where subscripts denote the value of Φ upstream and downstream of the shock. After
imposing the remaining auxiliary conditions, we find

A = 4/
(
eL/4 + 1

)
, c = 2 − 16

L
tan h

(
L

8

)
. (6.6)

This solution is compared with the weakly viscous solution of (6.2) in figure 19.
To study the stability of the steady solutions, we introduce ϕ(ξ, τ ) = Φ(ξ − cτ ) +

ϕ̂(ξ − cτ )eστ into (5.33) and linearize in the perturbation amplitude ϕ̂(ξ − cτ ):

σ ϕ̂ − 1
2
ϕ̂ + [(Φ − c)ϕ̂]ξ = ψ, (6.7)
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(2∂ξ − 1)ψ − 1
2
ϕ̂ − µϕ̂ξξξ = 0, (6.8)

with ψ an auxiliary variable and σ the sought growth rate. The solution proceeds
by introducing another Bloch wavenumber, K , to gauge stability with respect
to perturbations with longer spatial scale than the steady wave train. Numerical
computations then provide the growth rate, Re(σ ), as a function of K; an example
eigenfunction of the weakly viscous solution is also displayed in figure 19(b).

In the inviscid problem, the stability theory is complicated by the shock, which,
in general, shifts in space under any perturbation. The shifted shock contributes a
delta function to the linear solution. We take this singular component into account
using suitable jump conditions: integrating (6.7) and (6.8) with µ = 0 across the
discontinuity, and allowing for an arbitrary delta-function of amplitude ∆ in ϕ̂, gives(

σ − 1
2

)
∆ + (Φ+ − c)(ϕ̂+ + ϕ̂−) = ψ (6.9)

ψ+ − ψ− = 1
4
∆. (6.10)

A boundary-layer analysis based on the weakly viscous stability problem provides
exactly these relations, except as matching conditions across the boundary layer.
The regularity condition, ψ = σ ϕ̂, must also be imposed at the singular point, Φ = c.
Despite the lower order of the linear stability problem, an analytical solution is not
possible and we again solve the system numerically. Figure 19 once more compares
inviscid and weakly viscous solutions.

Typical results for the dependence of the growth rate of the most unstable mode
on wave spacing, L, are shown in figure 20. Four values of the Bloch wavenumber
are shown, corresponding to steady wave trains with n=1, 2, 3 and 4 waves, each a
distance L apart, in a periodic domain of length nL. As we increase the wave spacing,
there is a critical value beyond which periodic trains with multiple waves become
stable. This stabilization of multi-wave trains applies to general values of K and µ, as
illustrated by the neutral stability curves shown in figure 21. Thus, wave trains with
sufficiently wide spacing become stable to subharmonic perturbations, removing any
necessity for coarsening.

Figures 20 and 21 also illustrate that at yet larger wave spacing, a different
instability appears which destabilizes a single roll wave in a periodic box (n = 1).
For these wavelengths, the nonlinear wave develops a long flat tail resembling the
unstable uniform flow. Hence, we interpret the large-L instability as resulting from
perturbations growing on that plateau. We verify this character of the instability by
solving the amplitude equation numerically, beginning from an initial condition close
to the unstable nonlinear wave. Figure 22 illustrates how small disturbances grow
and disrupt the original wave; eventually further peaks appear and four roll waves
are present by the end of the computation, of which two are about to merge. Later
still, the system converges to a steady train of three waves. In other words, trains
with spacings that are too wide suffer wave-spawning instabilities that generate wave
trains with narrower separations.

The combination of the destabilization of trains of multiple waves at lower spacing
and the wave-spawning instability at higher spacing provides a wavelength selection
mechanism for nonlinear roll waves. We illustrate this selection mechanism further in
figure 23, which shows the results of many initial value problems covering a range of
domain lengths, d . Each computation begins with a low-amplitude initial condition
with relatively rapid and irregular spatial variation. The figure catalogues the final
wave spacing and displays the range over which trains of a given wave separation are
linearly stable. Also shown is the wavelength of the most unstable linear eigenmode of
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Figure 20. Linear stability results of roll waves using the amplitude equation for µ= 1
(a) and µ = 0 (b). Growth rate is plotted against wave spacing (L) for perturbations having a
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Figure 21. Stability boundaries for nonlinear roll waves on the (L,µ)-plane. (a) The stability
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Figure 22. A solution of the amplitude equation, beginning with an initial condition near an
unstable roll wave. (L =62 and µ= 1). The dotted line in (c) shows the initial condition.

the uniform equilibrium, which typically outruns the other unstable modes to create
a first nonlinear structure in the domain. At lower viscosities (µ), the most unstable
mode is too short to be stable, and the inception of the associated nonlinear wave
is followed by coarsening until the wave separation falls into the stable range. As
we raise µ, however, the most unstable mode falls into the stable range, and the
nonlinear wave trains that appear first remain stable and show no coarsening. Thus,
viscosity can arrest coarsening altogether.

7. Discussion
In this article, we have investigated turbulent roll waves in flows down planes with

topography. We combined numerical computations of both the linear and nonlinear
problems with an asymptotic analysis in the vicinity of the onset of instability. The
results paint a coherent picture of the roll-wave dynamics.

The addition of low-amplitude bottom topography tends to destabilize turbulent
flows towards long-wave perturbations, depressing the stability boundary to smaller
Froude number. At moderate topographic amplitudes, an eye of instability also
appears at much smaller Froude number, a feature connected to the development
of topographically induced hydraulic jumps in the background equilibrium flow (at
least for the St. Venant model). At larger amplitudes, the topography appears to be
stabilizing, and the onset of roll waves occurs at higher Froude numbers than expected
for a flat bottom. This is consistent with observations of hydraulic engineers, who
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Figure 23. Final roll-wave spacings (crosses) in a suite of initial-value problems with varying
domain size d and three values of µ: (a) 1, (b) 0.5, (c) 0.25. The shaded region shows where
nonlinear wave trains are linearly stable. Also shown are the stability boundaries of the
uniform flow (dashed line) and the fastest growing linear mode from that equilibrium (dotted
line).

traditionally have exploited structure in the bed to eliminate roll waves in artificial
water conduits, although usually in the direction transverse to the flow (Rouse 1938;
Montes 1998).

We have also found that the reduced model furnished by asymptotic theory
faithfully reproduces the nonlinear dynamics of roll waves. The model indicates
that roll waves proceed through an inverse cascade due to coarsening by wave
mergers, as found previously (Kranenburg 1992; Yu & Kevorkian 1992; Chang
et al. 2000). This phenomenon was also observed in the experiments conducted by
Brock (1969). However, the cascade does not continue to the longest spatial scale, but
instead becomes interrupted over intermediate wavelengths. Moreover, wave trains
with longer scale are unstable to wave-nucleation events. Thus, roll-wave trains
emerge with a range of selected spatial scales. In ongoing research, we plan to
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Figure 24. A computation with ‘random’ topography. (a) The realization of the topography
and its derivative, constructed as follows: ζ is built from a Fourier series in which real and
imaginary parts of the amplitude, ζn, are drawn randomly from normal probability distributions
with zero mean and standard deviation, (n2 + 16)−5/4, for n = 1, 2, . . . , 32, and then a reality
condition is imposed. (b) The inviscid equilibrium for a = 3, kb = 10 and F = 1.9, together with
the organizing curves, H 3 = F 2 and (1 − ζx)H

3 = 1; the solution is about to form a hydraulic
jump (and is marked by a star in (c)). (c) The (shaded) instability region on the (a, F )-plane
for ν = 0; to the right of this region, the periodic equilibria cease to exist, and weakly viscous
solutions develop hydraulic jumps. Also indicated are the viscous stability boundaries for
ν = 0.25 and 0.5; viscous equilibria are unstable above this curve. The dashed lines show the
corresponding stability boundaries predicted by asymptotics (with theory A for ν = 0.25 and
0.5 and theory B for ν = 0).

continue experiments like that shown in figure 1 to verify this wavelength selection
process further.

Although our results for low-amplitude topograpy are quite general, the discussion
of instabilities caused by the hydraulic jump has centred on a sinusoidal topographic
profile and one may wonder how the results differ when the bed is more complicated.
To answer this question we have made further explorations of the linear stability
problem with a less regular form for ζ . In particular, we have tested the linear
stability of equilibria flowing over ‘random topography’. Here, ζ is constructed using
a Fourier series representation; the coefficients of the series are chosen randomly
from a normal distribution whose mean and standard deviations depend on the order
of the Fourier mode. In this way, the topography conforms to a specific spectral
distribution, as sometimes used in descriptions of the ocean’s floor (Balmforth, Ierley &
Young 2002). An example is shown in figure 24, which displays the realization of ζ ,
an inviscid equilibrium solution on the (η, H ) phase plane, and inviscid and weakly
viscous stability boundaries on the (F, a)-plane. The overall conclusions are much
the same as for the sinusoidal case: the inclusion of topography lowers the stability
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boundary below F =2, and there is a significant destabilization associated with the
formation of hydraulic jumps in the equilibrium.

We close by remarking on the application of our results. We have considered
shallow-water equations with drag and viscosity, focusing mostly on the St. Venant
parametrization for turbulent flows and briefly on the Shkadov model for laminar
flows. We found that introduction of small, periodic, but otherwise arbitrary,
topography destabilizes turbulent roll waves but stabilizes the laminar ones. For
both kind of flows, the formation of a hydraulic jump in the equilibrium can further
destabilize the flow (at least near the F2-curve, if not near F = F1), a feature that may
play a role in other physical settings. For example, carefully fabricated periodic ribbing
in the elastic wall of a conduit may promote instability in the related physiological
and engineering problems. In contrast, our results on the nonlinear dynamics of roll
waves are more general: whatever the underlying physical setting, they should apply
equally.

This work was initiated and continued at the 2001 and 2003 Geophysical Fluid
Dynamics Summer Study Programs (Woods Hole Oceanographic Institution), which
is supported by NSF and ONR. We thank the participants for discussions. We
especially thank Eli Tziperman for drawing the ‘Bahai resonance’ to our attention
and for suggesting the problem of roll-wave stability in the presence of topography.
This work was supported partly by the NSF under the Collaborations in Mathematical
Geosciences initiative (grant number ATM0222109).

Appendix A. The second expansion
In the second expansion (theory B), we introduce

∂t → ∂t + ε2∂τ , ∂x → 1

ε
∂η + ∂x, ν = ε2ν2, F = F0 + ε2F2, (A 1)

and

u = 1 + εU1(η) + ε2[U2(η) + u2(x, t, τ )] + ε3[U3(η, x, t, τ ) + u3(x, t, τ )] + . . . ,

h = 1 + εH1(η) + ε2[H2(η) + h2(x, t, τ )] + ε3[H3(η, x, t, τ ) + h3(x, t, τ )] + . . . .

At leading order:

F 2
0 U1η + H1η + Aη = 0, U1η + H1η = 0, (A 2)

with solution

U1 = − 1

F 2
0 − 1

A(η) ≡ −H1. (A 3)

At order ε2, we find inconsequential equilibrium corrections. At order ε3:

F 2
0 U3η + H3η = ν2U2ηη − 2U2 + H2 − (U1 − H1)

2 + ν2H1ηU1η − F 2
0 (U1U2)η

− 2F0F1U1η − F 2
0 (u2t + u2x) − h2x − 2u2 + h2 − F 2

0 U1ηu2, (A 4)

U3η + H3η = −(H2U1 + H1U2 + H1u2 + h2U1)η − h2x − u2x − h2t . (A 5)

We average over the fine length scale η to eliminate the corrections, U3 and H3:

F 2
0 (u2t + u2x) + h2x + 2u2 − h2 = −4U 2

1 − ν2U
2
1η, h1t + h1x + u1x = 0. (A 6)
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Figure 25. Contours of constant growth rate (σ ) for ν = 0.02, kb = 10, K = 10−3. Thirty equally
spaced contours (dotted lines) are plotted with the growth rate going from 6.09 × 10−5 to 0.
The solid line denotes the neutral stability curve and the dashed line shows the location of F1,
F2 and F∗ curve.

To avoid exponential growth along the characteristics we impose

h2(ξ ) = 2u2(ξ ) + ν2U
2
1η + 4U 2

1 ≡ 2u2(ξ ) + ν2A2
η + 4A2, (A 7)

and F0 = 2. We decompose the fine-scale variation into two parts:

U3 = Û 3(η) + Ǔ 3(η)u2(ξ, τ ), H3 = Ĥ 3(η) + Ȟ 3(η)u2(ξ, τ ). (A 8)

The solution, Û 3 and Ĥ 3, is not needed. The other component satisfies

4Ǔ 3η + Ȟ 3η = −4U1η, Ǔ 3η + Ȟ 3η = −U1η. (A 9)

That is, Ȟ 3 = 0 and Ǔ 3 = − U1 = A/3.
At orders ε3 and ε4, we arrive at equations for H4(η, x, t, τ ), U4(η, x, t, τ ), H5(η,

x, t, τ ) and U5(η, x, t, τ ), which are not needed. We skip directly to the η-averaged
equations at order ε4:

h4ξ − 2u4ξ + 2u4 − h4 = 2F2u2ξ − 4u2τ − 4u2u2ξ − (u2 − h2)
2 + 4U 2

1 (2h2 − u2)

+ ν2U
2
1ηh2 + ν2u2ξξ − 4U1U3ξ + 4U1(H3 − U3) − 4U 4

1

+ ν2U1η(H3η − U3η) + H2ηU2η− 4U 2
1 (U2 − 2H2)

− (U2 − H2)2 + ν2U
2
1ηH2 + (H2η − U2η)U1ηU1, (A 10)

h4ξ − 2u4ξ = 4u2τ + 2(h2u2)ξ + 2(U1H3ξ + U3ξH1). (A 11)

Finally, we eliminate the combination, 2u4 − h4, to arrive at (5.25).

Appendix B. The laminar model
Throughout this article, we have used the turbulent drag law (1.3) to provide a

closure to equations (1.1) and (1.2). Here we provide linear stability and asymptotic
results using the laminar law (1.4).

Results from the linear stability analysis for the laminar problem reveal a slightly
different picture than for the turbulent counterpart. As seen in figure 25, when
topography is introduced, the critical Froude number is raised above

√
5/22, the
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critical Froude number for a flat bottom in this case. In this sense, topography is
stabilizing. The figure also shows a sharp spike in the linear growth rate, similar to
that seen in figure 11. This spike is close to the F2-curve and is reminiscent of the
instability induced by the hydraulic jump in the turbulent case, except that it now
occurs above the counterpart of Jeffrey’s threshold.

We repeat the asymptotic analysis for the laminar model using scalings identical
to the ones used for the turbulent problem. We provide here the final amplitude
equations for both possible scalings. For theory A,

u1τ − 21
22

u1τξ + 3
2

(
u2

1

)
ξ

− 15
22

(
u2

1

)
ξξ

+ 2ν1

(
f 2

η − 2Ǔ2ηfη

)
u1ξ

+
(
2
√

22
5
F1 − 1

2
ν1f 2

η

)
u1ξξ + 2ν1u1ξξξ = 0, (B 1)

where f and Ǔ2 satisfy

− 9
11

f − ν1fη + A = 0, (B 2)

− 9
11

Ǔ2 − ν1Ǔ2η + 15
22

f = 0. (B 3)

For theory B,

u2τ − 21
22

u2ξτ − 15
22

(
u2

2

)
ξξ

+ 3
2

(
u2

2

)
ξ
+

(
f 2 − 4

3
ν2f 2

η

)
u2ξ

+
(
2
√

22
5
F2 − 18

11
f 2 − 1

2
ν2f 2

η

)
u2ξξ + 2ν2u2ξξξ = 0, (B 4)

where f (η) = − (11/9)A(η).
Linear stability theory applied to equations (B 1) and (B 4) provides the corrections

to the critical Froude number:

F1 = − 31

968
ν1

√
110f

2

η +
21ν1

√
110

242
fηǓ2η (theory A), (B 5)

F2 =
15

√
110

968
f 2 +

39
√

110

968
f 2

η (theory B). (B 6)

The correction for theory A can be written as

F1 =

∞∑
j=1

[
315

5324

(
81

121
+ ν2

1j
2

)−1/2

− 31

968

]
|Aj |2

81
121

+ ν2
1j

2
, (B 7)

where the expression in square brackets is positive for j > 0. Thus small-amplitude
topography is stabilizing in both limits.

The amplitude equations (B 1) and (B 4) are similar to (5.23) and (5.25) although
they cannot be conveniently factorized into the form (5.33). This failure can be traced
to the fact that mass is advected at a different rate than momentum in the laminar
model when the parameter α is not equal to unity. The change in the structure of the
amplitude equation could conceivably affect the general character of the nonlinear
roll-wave dynamics. However, we have not explored this in the current work.
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